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We introduce periodic photonic structures where the strength of diffraction can be managed in a very broad
frequency range. We show how to design arrays of curved waveguides where light beams experience
wavelength-independent normal, anomalous, or zero diffraction. Our results suggest opportunities for efficient
self-collimation, focusing, and reshaping of beams produced by white-light and supercontinuum sources. We
also predict a possibility of multicolor Talbot effect, which is not possible in free space or conventional
photonic lattices.
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It is known that periodic photonic structures can be em-
ployed to engineer and control the fundamental properties of
light propagation �1,2�. In particular, the natural tendency of
beams to broaden during propagation can be controlled
through diffraction management �3,4�. Diffraction can be
eliminated in periodic structures leading to self-collimation
effect where the average beam width does not change over
hundreds of free-space diffraction lengths �5�. On the other
hand, diffraction can be made negative allowing for focusing
of diverging beams �6� and imaging of objects with sub-
wavelength resolution �7,8�.

The physics of periodic photonic structures is governed
by scattering of waves from modulations of the refractive
index and their subsequent interference. This is a resonant
process, which is sensitive to both the frequency and propa-
gation angle. Strong dependence of the beam refraction on
the optical wavelength known as superprism effect was ob-
served in photonic crystals �9�. Spatial beam diffraction also
depends on the wavelength, and it was found in recent ex-
periments �5,10� that the effect of beam self-collimation is
restricted to a spectral range of less than 10% of the central
frequency. Such a strong dependence of the spatial beam
dynamics on wavelength can be used for multiplexing and
demultiplexing of signals in optical communication networks
�11,12�. However, it remains an open question whether peri-
odic photonic structures can also be used to perform an ef-
fective control of polychromatic and white-light beams such
as those produced by light with supercontinuum frequency
spectrum generated in photonic crystal fibers �13,14�.

In this paper, we demonstrate, for the first time to our
knowledge, that intrinsic wavelength-dependence of diffrac-
tion strength in periodic systems can be compensated by geo-
metrically induced dispersion and suggest periodic photonic
structure designed for wavelength-independent diffraction
management in a very broad frequency range covering up to
50% of the central frequency. We show the optimized peri-
odic structures where multicolor beams experience constant
normal, anomalous, or zero diffraction. This opens up oppor-
tunities for efficient self-collimation, focusing, and shaping
of white-light beams and patterns.

We study propagation of beams emitted by a continuous
white-light source in a periodic array of coupled optical
waveguides �see Fig. 1�a��, where the waveguide axes are
periodically curved in the propagation direction �see ex-

amples in Figs. 2�a� and 3�a��. Such waveguide array struc-
tures can be created using established fabrication techniques
�3,10�. In the linear regime, the overall beam dynamics is
defined by independent evolution of complex beam enve-
lopes E�x ,z ;�� at individual frequency components gov-
erned by the normalized paraxial equations,
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where x and z are the transverse and propagation coordinates
normalized to the characteristic values xs=1 �m and
zs=1 mm, respectively, � is the vacuum wavelength, c is the
speed of light, n0 is the average refractive index of the me-
dium, ��x����x+d� is the refractive index modulated with
the period d in the transverse direction, and x0�z��x0�z+L�
defines the longitudinal bending profile of the waveguide
axis with the period L�d. When the tilt of beams and
waveguides at the input facet is less than the Bragg angle at
each wavelength, the beam propagation is primarily charac-
terized by coupling between the fundamental modes of the
waveguides, and can be described by the tight-binding equa-
tions taking into account the periodic waveguide bending
�10,15�, id�n /dz+C�����n+1+�n−1�=�ẍ0�z�n�n, where
�n�z ;�� are the mode amplitudes, n is the waveguide num-
ber, �=2�n0d /� is the dimensionless frequency, and the
dots stand for the derivatives. Coefficient C��� defines a
coupling strength between the neighboring waveguides, and
it characterizes diffraction in a straight waveguide array with
x0�0 �16,17�. The coupling coefficient decreases at higher
frequencies �18� and accordingly the beam broadening is
substantially weaker at shorter wavelengths, see Figs.
1�b�–1�e�.

We consider bending profiles which consist symmetric
segments such that for each segment x0�z�= f�z−za� for a
given coordinate shift za, where function f�z� is symmetric,
f�z�� f�−z�. Then, after a full bending period �z→z+L� the
beam diffraction is the same as in a straight waveguide array
with the effective coupling coefficient �10,15� Ceff���
=C���L−1�0

L cos��ẋ0����d�. Therefore, diffraction of multi-
color beams is defined by an interplay of bending-induced
dispersion and frequency dependence of the coupling coeffi-
cient in a straight waveguide array. We suggest that spatial
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evolution of all frequency components can be synchronized
allowing for shaping and steering of multicolor beams, when
effective coupling remains constant around the central fre-
quency �0,

�dCeff���/d���=�0
= 0, �2�

and we demonstrate below that this condition can be satisfied
by introducing special bending profiles.

First, we demonstrate the possibility for self-collimation
of white-light beams, where all the wavelength components
remain localized despite a nontrivial evolution in the
photonic structure. Self-collimation regime is realized when
the diffraction is suppressed and the effective coupling
coefficient vanishes, Ceff=0. This effect was previously
observed for monochromatic beams in arrays with zigzag �3�
or sinusoidal �10� bending profiles, however, in such
structures the condition of zero coupling cannot be satisfied
simultaneously with Eq. �2�, resulting in strong beam
diffraction under frequency detuning by several percent �10�.
We find that broadband diffraction management becomes
possible in hybrid structures with a periodic bending profile
that consists of alternating segments �see example in
Fig. 2�a��, x0�z�=A1�cos�2�z /z0�−1	 for 0	z	z0, x0�z�
=A2�cos�2��z−z0� / �L /2−z0��−1	 for z0	z	L /2, and
x0�z�=−x0�z−L /2� for L /2	z	L. Effective coupling in the
hybrid structure can be calculated analytically, Ceff���
=C���2L−1�z0J0�
1�+ �L /2−z0�J0�
2��, where Jm is the
Bessel function of the first kind of the order m, 
1
=2�A1� /z0, and 
2=2�A2� / �L /2−z0�.

We select a class of symmetric profiles of the waveguide

bending to avoid asymmetric beam distortion due to higher-
order effects such as third-order diffraction. Additionally, the
waveguides are not tilted at the input, i.e., ẋ0�z=0�=0, in
order to suppress excitation of higher-order photonic bands
by incident beams inclined by less than the Bragg angle. The
effect of Zener tunneling to higher bands �19,20� and asso-
ciated scattering losses can be suppressed irrespective of the
waveguide tilt inside the photonic structure by selecting suf-
ficiently slow modulation to minimize the curvature ẍ0�z�
and thereby achieve adiabatic beam shaping.

In order to realize broadband self-collimation, we choose
the structure parameters such that 
1��0�= 
̃1
2.40 and


2��0�= 
̃2
5.52 are the first and the second roots of equa-

tion J0�
̃�=0. Then, the self-collimation condition is exactly
fulfilled at the central frequency �0, Ceff��0�=0, and simul-
taneously the condition of frequency-independent coupling
in Eq. �2� is satisfied for the following modulation

parameters, A1= �
̃1
̃2J1�
̃2� /2��
̃2J1�
̃2�− 
̃1J1�
̃1���0�L /2,

FIG. 1. �Color online� Discrete diffraction in �a� straight wave-
guide array with period d=9 �m. �b� Coupling coefficient normal-
ized to the coupling at the central frequency C0. �c�–�e� Evolution
of beam intensity and output intensity profiles after 80 mm propa-
gation of a 3 �m wide input beam for �c� �r=580 nm, �d�
�0=532 nm, and �e� �b=490 nm, which correspond to the points
“c, d, and e” in �b�. Waveguide width is 3 �m and substrate refrac-
tive index is n0=2.35.

FIG. 2. �Color online� �a�–�e� Broadband self-collimation in an
optimized waveguide array: �a� Waveguide bending profile with
the period L=60 mm and modulation parameters A1=27 �m,
A2=42 �m, z0=18 mm. �b� Effective coupling normalized to the
coupling in the straight array at the central frequency C0=C��0�.
�c�–�e� Evolution of the beam intensity and output intensity profiles
for different wavelengths marked �c� �r=560 nm, �d� �0=532 nm,
and �e� �b=400 nm corresponding to marked points in �b�. �f�–�h�
Frequency-sensitive diffraction in array with the sinusoidal bending
profile at the wavelengths corresponding to plots �c�–�e�.
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A2=−�J1�
̃1� /J1�
̃2��A1, and z0=2��0A1 / 
̃1. As a result, we
obtain an extremely flat coupling curve shown in Fig. 2�b�
where the point d corresponds to the central frequency. In
this hybrid structure not only the first derivative vanishes
according to Eq. �2�, but the second derivative vanishes as

well, ��d2Ceff��� /d�2��=�0
���
̃1J2�
̃1�J1�
̃2�− 
̃2J2�
̃2�J1�
̃1��

�10−15. As a result, the effective coupling remains close to
zero in a very broad spectral region of up to 50% of the
central frequency. We note that the modulation period L is a
free parameter, and it can always be chosen sufficiently large
to avoid scattering losses due to waveguide bending since the
maximum waveguide curvature is inversely proportional to
the period, max�ẍ0�z���L−1. Although the beam evolution
inside the array does depend on the wavelength, the incident
beam profile is exactly restored after a full modulation pe-
riod, see examples in Figs. 2�c�–2�e�, where results of nu-
merical simulations of Eq. �1� are presented. Self-collimation
is preserved even at the red �long-wavelength� spectral edge,
where coupling length is the shortest and discrete diffraction
in the straight array is the strongest �cf. Fig. 2�c� and Fig.
1�c��. The hybrid structure provides a dramatic improvement
in the bandwidth for self-collimation effect compared to the
array with a simple sinusoidal modulation, where beams ex-
hibit diffraction under small frequency detuning, see Figs.
2�f�–2�h�.

We now analyze the conditions for frequency-independent
normal or anomalous diffraction that may find applications
for reshaping of multicolor beams. In order to reduce the
device dimensions, it is desirable to increase the absolute
value of the effective coupling and simultaneously satisfy

Eq. �2� to achieve broadband diffraction management. We
find that Eq. �2� can be satisfied in the two-segment hybrid
structure with z0=L /2 and A1= �
 /2��0�L /2. Here a set of
possible parameter values 
 is determined from the relation
J0�
� /J1�
�=C0
 /C1�0, where C0=C��0� and C1

= �dC��� /d���=�0
characterize dispersion of coupling in a

straight array. It is possible to obtain both normal and
anomalous diffraction regimes for normally incident beams,
corresponding to positive and negative effective couplings
Ceff��0�=C0J0�
� depending on the chosen value of 
. For
example, for the waveguide array shown in Fig. 1, at the
central frequency �0=250 �corresponding wavelength is
�0=532 nm� coupling parameters are C0
0.13 mm−1 and
C1
−0.0021 mm−1. Then, constant positive coupling
around the central frequency Ceff��0�
0.25C0 is realized for


6.47 and constant negative coupling Ceff��0�
−0.25C0

for 

2.97.
We perform a comprehensive analytical and numerical

analysis, and find that a hybrid structure with bending
profile consisting of one straight �i.e., A1�0� and one
sinusoidal segment can provide considerably improved
performance if �0C1 /C0�
crJ1�
cr� /J0�
cr�, where value

cr
5.84 is found from the equation �J1�
cr�+
cr�J0�
cr�
−J2�
cr�� /2��J0�
cr�−1�+
crJ1

2�
cr�=0. Under such condi-
tions, larger values of positive effective coupling can
be obtained in a hybrid structure with A1�0, A2

= �C1Ceff��0� /2�C0
2J1�
̃2��L /2, z0= �Ceff��0� /C0�L /2. In this

structure, the effective coupling at central frequency is

Ceff��0�= 
̃2C0
2J1�
̃2� / �
̃2C0J1�
̃2�+�0C1�.

Example of a hybrid structure which provides strong
wavelength-independent diffraction is shown in Fig. 3�a�,
and the corresponding effective coupling is plotted in Fig.
3�b�. The output diffraction profiles in this optimized struc-
ture are very similar in a broad spectral region, see examples
for three wavelengths in Figs. 3�c�–3�e�. We note that the
outputs at these wavelengths are substantially different after
the same propagation length in the straight waveguide array,
as shown in Figs. 1�c�–1�e�.

As one of the applications of the broadband diffraction

FIG. 3. �Color online� Wavelength-independent diffraction in an
optimized periodically curved waveguide array. �a� Waveguide
bending profile with the period L=40 mm and �b� corresponding
effective coupling normalized to the coupling in the straight array at
the central frequency C0=C��0�. �c�–�e� Evolution of beam inten-
sity and output intensity profiles after propagation of two full peri-
ods for the wavelengths �c� �r=580 nm, �d� �0=532 nm, and �e�
�b=490 nm, which correspond to the points c, d, and e in plot �b�.

FIG. 4. �Color online� �a� Monochromatic Talbot effect in the
straight waveguide array shown in Fig. 1�a�: periodic intensity re-
vivals every LT

�1�=16.5 mm of propagation for the input pattern �1,
0, 0, 1, 0, 0,…	 and the wavelength �0=532 nm. �b� Disappearance
of the Talbot carpet in the straight array when input consists of three
components with equal intensities and different wavelengths
�r=580 nm �redshifted�, �0=532 nm �green�, and �b=490 nm
�blueshifted�. �c� Multicolor Talbot effect in the optimized structure
with wavelength-independent diffraction �see Fig. 3.� Half of the
bending period L /2=LT

�2�=53.2 mm is equal to the Talbot distance
for the corresponding effective coupling length.
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management we consider a multicolor Talbot effect which
allows one to manipulate white-light patterns. The Talbot
effect, when any periodical monochromatic light pattern re-
appears upon propagation at certain equally spaced dis-
tances, has been known since the famous discovery in 1836
�21�. It was recently shown that the Talbot effect is also
possible in discrete systems for certain periodic input pat-
terns �18�. For example, for the monochromatic periodic in-
put pattern of the form �1, 0, 0, 1, 0, 0,…	, Talbot revivals
take place at the distance LT

�1�= �2� /3��1/C����, see Fig.
4�a�.

Period of the discrete Talbot effect in the waveguide array
is inversely proportional to the coupling coefficient C���,
which strongly depends on frequency, see Fig. 1�b�. There-
fore, for each specific frequency Talbot recurrences occur at
different distances �18�, and periodic intensity revivals dis-
appear for the multicolor input, see Fig. 4�b�. Multicolor Tal-
bot effect is also not possible in free space where revival
period is proportional to frequency. Most remarkably, multi-
color Talbot effect can be observed in optimized waveguide
arrays with wavelength-independent diffraction, see Fig.
4�c�. In this example, we use the shape of structure with

constant positive diffraction shown in Fig. 3, and choose half
of the bending period to be equal to the period of the Talbot
recurrences for the corresponding effective coupling in this
structure, LT

�2�= �2� /3��1/Ceff����.
Similar ideas may also be applied to other fields where

wave dynamics is governed by nonlinear Schrödinger equa-
tions �1� with z standing for time. In particular, by introduc-
ing special periodic shift of lattice potential it may be pos-
sible to manipulate collectively multispecies Bose-Einstein
condensates, where different wavelengths correspond to in-
verse masses of bosons from different species �e.g., �22��.

In conclusion, we have suggested periodic photonic struc-
tures where diffraction can be engineered in a very broad
frequency range and light beams experience wavelength-
independent normal, anomalous, or zero diffraction. Our re-
sults suggest opportunities for efficient self-collimation, fo-
cusing, and shaping of polychromatic light beams and
patterns. This may open up new possibilities for tailoring and
enhancing nonlinear interactions of beams with different
spectral content, which can be confined together for extended
propagation distances.
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